Konstander
Symbol | Verdi | Kommentar |
---|---|---|
$q$ | $1.602\cdot 10^{-19}\text{C}$ | |
$k$ | $1.38\cdot 10^{-23}\text{J}\cdot\text{K}^{-1}$ | |
$n_i$ | $1.1\cdot 10^{16}\text{bærere}/\text{m}^3$ | Ved $T=300\text{ K}$ |
$\epsilon_0$ | $8.854\cdot 10^{-12}\text{F}/\text{m}$ | |
$K_{ox (oksid)}$ | $\cong 3.9$ | |
$K_{Si (silikon)}$ | $\cong 11.8$ |
Revers-forspent diode
\[C_j = \frac{C_{j0}}{\sqrt{1+\frac{V_R}{\Phi_0}}}\] \[Q = 2 C_{j0} \Phi_0 \sqrt{1 + \frac{V_R}{\Phi_0}}\] \[C_{j0} = \sqrt{\frac{q K_{Si} \epsilon_0}{2 \Phi_0} \frac{N_D N_A}{N_D + N_A}} \] \[C_{j0} = \sqrt{\frac{q K_{Si} \epsilon_0 N_D}{2 \Phi_0}}, \text{ hvis } N_A \gg N_D\] \[\Phi_0 = \frac{k_B T}{q}\ln\left(\frac{N_A N_D}{n_i}\right)\]Normalt forspent diode
\[ I_D = I_S \exp{\frac{V_D}{V_T}} \] \[I_D = A_D q n_i^2 \left(\frac{D_n}{L_n N_A}+\frac{D_p}{L_p N_D}\right)\] \[V_T = \frac{k T}{q} \approx 26\text{mV, ved } T=300\text{ K}\]Småsignal for forspent diode
Transisor i triodeområdet
Dette gjelder for $V_{GS} > V_{tn}$, $V_{DS} \leq V_\text{eff}$.
\[I_D = \mu C_{ox} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{tn})V_{DS} - \frac{V_{DS}^2}{2}\right]\] \[V_\text{eff} = V_{GS} - V_{tn} \] \[V_{tn} = V_{\text{tn-}0} + \gamma\left(\sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F}\right)\] \[\Phi_F = \frac{k T}{q}\ln\left(\frac{N_A}{n_i}\right)\] \[\gamma = \frac{\sqrt{2 q K_{Si} \epsilon_0 N_A}}{C_{ox}}\] \[C_{ox} = \frac{K_{ox} \epsilon_0}{t_{ox}}\]Småsignal av transistor i triodeområdet
Transistor i aktivt område
Dette gjelder bare for $V_{GS} > V_{tn}$, $V_{DS} \geq V_\text{eff}$.
\[I_D = \frac{1}{2}\mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect}\] \[\lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}}\] \[V_{tn} = V_{tn\text{-}0} - \gamma\left(\sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F}\right)\] \[V_\text{eff} = V_{GS} - V_{tn} = \sqrt{\frac{2 I_D}{\mu_n C_{ox} \frac{W}{L}}} = V_{DS, \text{sat.}} \]